Assembling a TTO
These are the assembly instructions for the Tessellating Truncated Octahedra; you’ll find background and the cut files for them on them in the following post.
Read Morethe heart of Studio Infinity, MakeStream articles show structures – and frequently how to make them – that exhibit interesting design ideas, often inspired by mathematics.
These are the assembly instructions for the Tessellating Truncated Octahedra; you’ll find background and the cut files for them on them in the following post.
Read MoreAnother aspect of the PCMI session on Illustrating Math was a series of exploratory, hands-on workshops. One of them focused, in part, on the design of modules like the one for the truncated triakis tetrahedron, but based on other existing modular origami units.
Read MoreFor the actual building event mentioned in the previous post (linked above), participants could choose from a variety of target polyhedra. The origami inspiration was the PHiZZ unit, which stands for Pentgons Hexagons in Zig Zag, so the ideal targets consist of just pentagons and hexagons. With Euler’s formula for polyhedra and a little calculation you can determine that such a shape must have exactly twelve pentagons and almost any number of hexagons; the page for the event includes a table of candidates.
Read MoreIn many ways, modular origami is ideally suited for the type of exploratory mathematical play that S∞ is dedicated to: it’s easy to get started, very tactile, and offers nearly endless opportunities for creating interesting and beautiful objects. For example, here’s a PHiZZ unit torus that resulted from a workshop I led at The Brearley School (photo courtesy of Maggie Maluf).
Read MoreThis is a sequel to a (pre-pandemic) post about weaving a stellated polyhedron. This time, I’d like to show how similar techniques can also be used to create a “great stellated dodecahedron” (“GSD” for short; illustration below).
Read MoreAfter seeing Laura Taalman’s inspiring 3d print, it occurred to me that one could also render the edge-to-edge cubical array of dodecahedra contemplated in this earlier post in an analogous way. Plus, I just received a new Prusa SL1 printer, and needed something to try it out on.
Read MoreWhen I showed this recent post to my friend and colleague Laura Taalman, aka mathgrrl, she suggested that another approach to creating a model of the underlying structure would be to construct the icosahedra themselves (rather than the negative space), except use wireframes of the icosahedra rather than solid ones to avoid obscuring all of the internal structure. Her encouragement motivated me to create a new OpenSCAD file for this.
Read MoreJudging from at least one of the previous projects, Studio Infinity is intrigued with connecting polyhedra edge-to-edge. (Of course, connecting them face-to-face is interesting, too, but that’s pretty familiar from Legos and such; and vertex-to-vertex is the same as connecting dual polyhedra face-to-face.)
Read MoreThis MathStream post about why an icosahedron inscribes in a cube also shows that a dodecahedron fits into a cube in an analogous way. That raised the prospect that it might also be worth building an “Antidodec” analogous to the Anticos.
Read MoreHere’s a large-scale model I designed of the Weaire-Phelan space packing, built by the participants of the Fall 2019 semester on Illustrating Mathematics at ICERM in Providence.
Read MoreHere’s a picture of FireStar, a large-scale woven small stellated dodecahedron constructed by visitors to the open house of the Institute for Computational and Experimental Mathematics during Providence, RI’s WaterFire festival on 2019 Sep 28.
Read MoreIt’s high time that S∞ got back to its core: mathematical constructions you can build. Here’s an attractive star-shaped polyhedron made with a weaving technique that I am indebted to Jürgen Richter-Gebert for introducing me to.
Read More