12 Aug

Space Unboxed

Our recent honeycomb lattice build at MathFest took up relatively little space for how rigid it was, so a natural question is what proportion of space the boxes take up in an infinitely repeating lattice. Since the boxes are themselves empty, a more amusing framing might be: how much of space would be boxed versus unboxed?

In our construction, we used boxes of dimension $a \times a \times b$. The way we thought about filling space with these boxes in their lattice arrangement was by complementing them with cuboctahedra with edges of length $a$ and irregular rhombicuboctahedron with $8$ equilateral triangular faces of edge length $a$, $6$ square faces of edge length $b$, and $12$ rectangular $a \times b$ faces:

From this perspective, the space occupied by these cuboctahedra and rhombicuboctahedra is the unboxed space.

To get a sense of how little space the boxes contain, we can look at the smallest cube containing our irregular rhombicuboctahedron. If we look at what else that cube contains from the honeycomb, we’ll see it’s $8$ eighth-cuboctahedra and $12$ quarter-boxes.

In other words,

$$V_{\textrm{cube}} = V_{\textrm{rhombicuboctahedron}} + V_{\textrm{cuboctahedron}} + 3V_{\textrm{box}}$$

We know $V_{\textrm{box}} = a^2 b$ and can show that

$$V_{\textrm{cube}} = (\sqrt{2} a + b)^3$$

Since we can recreate the cantellated cubic honeycomb by arranging these cubes in a simple cubic honeycomb, the fraction of space taken up by the boxes is

$$\rho = \frac{3V_{\textrm{box}}}{V_{\textrm{cube}}} = \frac{3 a^2 b}{(\sqrt{2} a + b)^3}$$

When we have cubic boxes and $b = a$, this reduces to

$$\rho = \frac{3}{(1+\sqrt{2})^3} \approx 0.2132$$

In other words, the sculpture repeated ad infinitum would leave about $78.68$ percent of space unboxed if the boxes were cubes.

Our boxes were $6″ \times 6″ \times 12″$, which is an $a:b$ ratio of $1:2$. This gives

$$\rho = \frac{6}{(2+\sqrt{2})^3} \approx 0.1508$$

and leaves a whopping $84.92$ percent of space unboxed! Since

$$\lim_{b \rightarrow \infty }\frac{3 a^2 b}{(\sqrt{2} a + b)^3} = 0$$

we could box as arbitrarily small a ratio of space as we like by choosing $b$ much, much greater than $a$.

18 Jul

Studio Infinity + You

Are you interested in bringing a mathematical art installation to your school or community? Studio Infinity would love to help!

Mathematical art has the power to inspire and educate. Installing a large work as a group helps foster or reinforce a sense of community around shared intellectual and artistic interests. And it can provide an opportunity for people to engage with and think about math in ways they may never have before.

Read More
18 Mar

Planning TOWARD

Because TOs Work As a RD, Studio Infinity’s next project has officially been dubbed TOWARD! We are collaborating with Peter Kagey, a Visiting Assistant Professor of Mathematics at Harvey Mudd College, who found the TO particularly appealing due to its double life as a permutohedron. The build will take place at Harvey Mudd College, so we’re opting to use Harvey Mudd’s black, white, and gold as our palette. Here’s our poster for the event, featuring a digital mock-up of what we intend to build:

Read More