G4G Celebration of Mind 2021 October
Glen Whitney
studioinfinity.org/pintegons
G4G Celebration of Mind 2021 October
Glen Whitney
studioinfinity.org/pintegons
Joint work with Alissa Crans
image from the Toledo Museum of Art
instead of insisting that our pentagons are regular, allow them to be merely convex
images from ‘kjo’ on math.stackexchange.com
• We’re looking for integer-sided pentagons in those families
• We’re looking for pintegons in those families
The pintegons in Family 7 are those with sides $(a,b,b,b,b)$ for whole numbers $a$ and $b$ satisfying \[0 < a < (2\sqrt\phi)b.\]
\[\begin{split}C: & \,\left(b+(d-2a)\cos\frac{C}2, (d-2a)\sin\frac{C}2\right)\\
= & \,\left(d\left(\sin C + \cos\frac{C}2\right), a + d\left(\cos C − \sin\frac{C}2\right)\right) \end{split}\]
\[\begin{split}b & = d \sin 2\gamma + 2a \cos \gamma \\
2(d − 2a) \sin \gamma & = a + d \cos 2\gamma − 2a \sin \gamma \end{split}\]
\[\sin\gamma = \frac{a-d + \sqrt{a^2+3d^2}}{2d}\]
$H = a^2+3d^2$
\[ b = \frac{(\sqrt{H} + 3a − d)\sqrt{2(d − a)(\sqrt{H} + a)}}{2d} \]
$H = a^2+3d^2$
When is \[ \sqrt{2(d − a)(\sqrt{H} + a)} \] of the form \[ r + s\sqrt{H} \] for rational numbers $r$ and $s$?
When is $\sqrt{2(d − a)(\sqrt{H} + a)}$ of the form $ r + s\sqrt{H} $ for rational numbers $r$ and $s$?
Well, when is $\sqrt{n}$ of the form $r$ for a rational number $r$?
$\sqrt1, \sqrt2, \sqrt3, \sqrt4, \sqrt5, \sqrt6, \sqrt7, \sqrt8, \sqrt9, \sqrt{10}, \ldots$
When is $\sqrt{2(d − a)(\sqrt{H} + a)}$ of the form $ r + s\sqrt{H} $ for rational numbers $r$ and $s$?
Answer: Only when $2(d − a)(\sqrt{H} + a) = (j + k\sqrt{H})^2$ for $j$ and $k$ each either a whole number or half of an odd number. (Dedekind, 1871)
$H = a^2+3d^2$
Turns out $H$ must be a perfect square!
So there’s some $h$ such that $a^2 + 3d^2 = h^2.$
\[ b = \frac{(\sqrt{H} + 3a − d)\sqrt{2(d − a)(\sqrt{H} + a)}}{2d} \]
$H = a^2+3d^2$
Turns out $H$ must be a perfect square!
So there’s some $h$ such that $a^2 + 3d^2 = h^2.$
\[ b = \frac{(h + 3a − d)\sqrt{2(d − a)(h + a)}}{2d} \]
Integers $a, d, h,$ and $m$ so:
$a^2 + 3d^2 = h^2$
$2(d-a)(h+a) = m^2$
$h+3a-d > 0$
\[ b = \frac{(h+3a-d)\sqrt{2(d-a)(h + a)}}{2d} \]
studioinfinity.org/pintegons